The calculated χ² value is approximately 0.004445. Compare this with the critical χ² value at the desired level of significance to make a decision about the null hypothesis.
Certainly! Let's go through the detailed calculations for the chi-square test of independence.
Given data:
-------------------------------------
| No Seat Belt | Seat Belt | Total
-----------------|--------------|-----------|-------
Smoke | 67 | 448 | 515
Do not Smoke | 327 | 2,187 | 2,514
-----------------|--------------|-----------|-------
Total | 394 | 2,635 | 3,029
-------------------------------------
Calculate the expected frequencies (Ei):
- E (Smoke, No Seat Belt) ≈ 66.48
- E (Smoke, Seat Belt) ≈ 448.52
- E (Do not Smoke, No Seat Belt) ≈ 326.52
- E (Do not Smoke, Seat Belt) ≈ 2,186.48
Now, calculate the chi-square test statistic (χ²):
![\[ \chi^2 \approx ((67 - 66.48)^2)/(66.48) + ((448 - 448.52)^2)/(448.52) + ((327 - 326.52)^2)/(326.52) + ((2,187 - 2,186.48)^2)/(2,186.48) \]](https://img.qammunity.org/2024/formulas/mathematics/college/h6ta71vw28ier5eqpn6wd88kgitcsjfhbu.png)
![\[ \chi^2 \approx 0.00346 + 0.000061 + 0.000828 + 0.000105 \]](https://img.qammunity.org/2024/formulas/mathematics/college/zjwwyyfupv8i7xq1fdnajjzzgr6j9oriv9.png)
![\[ \chi^2 \approx 0.004445 \]](https://img.qammunity.org/2024/formulas/mathematics/college/fptijqytzm9korhzr5dwuq4rbrbv2vpns1.png)
Now, compare this χ² value with the critical χ² value at the desired level of significance (using a chi-square distribution table). If the calculated χ² is greater than the critical value, reject the null hypothesis.
Note: Degrees of freedom (df) for a 2x2 table is 1.