63.1k views
5 votes
The question is in the image

Please help connexus friends :)

The question is in the image Please help connexus friends :)-example-1
User Showaltb
by
9.0k points

1 Answer

4 votes

The solution to the system of equations 5x + y = 0 and 5x + 2y = 30 is x = -6 and y = 30, obtained through substitution by solving for y and substituting the result.

To find the solution to the system using substitution or elimination, let's choose one method. I'll demonstrate using substitution.

Substitution:

1. Solve the first equation for one variable, say \(y\).


\[ 5x + y = 0 \] \[ y = -5x \]

2. Substitute this expression into the second equation.


\[ 5x + 2y = 30 \] \[ 5x + 2(-5x) = 30 \]

3. Simplify and solve for x.


\[ 5x - 10x = 30 \] \[ -5x = 30 \] \[ x = -6 \]

4. Substitute the value of x back into the expression for y.


\[ y = -5(-6) \] \[ y = 30 \]

So, the solution to the system is x = -6 and y = 30.

User AndASM
by
8.1k points

Related questions