In the experiment, a source of light of wavelength:
- (c) λ = 750 nm, will produce a narrower interference pattern.
- (d) λ = 350 nm, will produce no interference pattern.
How to find source of light?
In a Young's double-slit experiment, the condition for constructive interference (bright fringes) is given by the formula:
![\[ d \sin \theta = m \lambda \]](https://img.qammunity.org/2024/formulas/physics/high-school/cq0nv2o0pw1tam7uwjcxcm4poohbmiv3nb.png)
where:
d = separation between the slits,
θ = angle of the bright fringe,
m = order of the fringe (an integer),
λ = wavelength of light.
If m = 1, the condition for the first-order bright fringe ( m = 1) is:
![\[ d \sin \theta = \lambda \]](https://img.qammunity.org/2024/formulas/physics/high-school/6fron6sc0w4vosu57d8svpec8l6pu81zse.png)
Now, analyze the given situations:
(a) λ = 600 nm:
![\[ d \sin \theta = 0.15 \, \text{mm} * \sin \theta = 600 \, \text{nm} \]](https://img.qammunity.org/2024/formulas/physics/high-school/rz6rv462fxunewc3wignrwizw84yytj6fy.png)
![\[ \sin \theta = \frac{600 \, \text{nm}}{0.15 \, \text{mm}} = 4 \]](https://img.qammunity.org/2024/formulas/physics/high-school/1w1yym3zk1me97u13t3a9670j4h86tglbt.png)
Since
cannot be greater than 1, this situation will not produce a diffraction pattern.
(b) λ = 450 nm:
![\[ d \sin \theta = 0.15 \, \text{mm} * \sin \theta = 450 \, \text{nm} \]](https://img.qammunity.org/2024/formulas/physics/high-school/5arfw9et55zjfyogifgdeekgnsl4bu1j4v.png)
![\[ \sin \theta = \frac{450 \, \text{nm}}{0.15 \, \text{mm}} = 3 \]](https://img.qammunity.org/2024/formulas/physics/high-school/ws5u02hdx6yhd3ymoeimeeqo63defwzsf4.png)
This situation will not produce a well-defined diffraction pattern.
(c) λ = 750 nm nm:
![\[ d \sin \theta = 0.15 \, \text{mm} * \sin \theta = 750 \, \text{nm} \]](https://img.qammunity.org/2024/formulas/physics/high-school/2cem7tns1av7kuzx5hc3zj3yhko986l4hw.png)
![\[ \sin \theta = \frac{750 \, \text{nm}}{0.15 \, \text{mm}} = 5 \]](https://img.qammunity.org/2024/formulas/physics/high-school/4c0rkq7n9mbf8q30n7ut1u1jlyw6f3og6c.png)
This situation will produce a narrower interference pattern.
(d) λ = 350 nm:
![\[ d \sin \theta = 0.15 \, \text{mm} * \sin \theta = 350 \, \text{nm} \]](https://img.qammunity.org/2024/formulas/physics/high-school/y59e47jy4zy6n34n1h1vewxb28lvjuox1j.png)
![\[ \sin \theta = \frac{350 \, \text{nm}}{0.15 \, \text{mm}} = 2.333 \]](https://img.qammunity.org/2024/formulas/physics/high-school/g4hwrli7iyu2ssk8666nfairgslvdqb700.png)
This situation will not produce a clear interference pattern.
So, the correct statements are:
(c) λ = 750 nm will produce a narrower interference pattern.
(d) λ = 350 nm will produce no interference pattern.