Final answer:
The maximum value of the given expression is option d)) 1/4.
Step-by-step explanation:
To find the maximum value, we can use the AM-GM inequality.
The AM-GM inequality states that for any positive real numbers a and b, the arithmetic mean (AM) is always greater than or equal to the geometric mean (GM), i.e., AM ≥ GM.
Let's apply this inequality to the given expression.
- By applying AM-GM inequality on xm and (1−x²ᵐ), we have:
AM ≥ GM
(xm + (1−x²ᵐ))/2 ≥ √(xm * (1−x²ᵐ))
(1−x²ᵐ)/2 ≥ √(xm * (1−x²ᵐ)) - Similarly, by applying AM-GM inequality on yn and (1−y²ⁿ), we have:
(1−y²ⁿ)/2 ≥ √(yn * (1−y²ⁿ)) - Multiplying the inequalities obtained from steps 1 and 2:
((1−x²ᵐ)/2) * ((1−y²ⁿ)/2) ≥ √(xm * (1−x²ᵐ) * yn * (1−y²ⁿ)) - Substituting the given expression in step 3:
((1−x²ᵐ)/2) * ((1−y²ⁿ)/2) ≥ √(xm * (1−x²ᵐ) * yn * (1−y²ⁿ)) - Taking the square root of both sides:
√(((1−x²ᵐ)/2) * ((1−y²ⁿ)/2)) ≥ √(√(xm * (1−x²ᵐ) * yn * (1−y²ⁿ)))
(√(1−x²ᵐ)/√2) * (√(1−y²ⁿ)/√2) ≥ xy - Rearranging the inequality:
xᵐyⁿ * (1−x²ᵐ) * (1−y²ⁿ) ≤ 1/4 * (1/2 * (1/2))
xᵐyⁿ * (1−x²ᵐ) * (1−y²ⁿ) ≤ 1/4
Hence, the maximum value of the expression xmyn(1−x²ᵐ)(1−y²ⁿ) is 1/4, which corresponds to option (d).