53.3k views
4 votes
If ab+bc+ac=0, find the value of (1/a²-bc)+(1/b²-ca)+(1/c²-ab)

User Muthee
by
8.5k points

1 Answer

6 votes

The value of
\((1)/(a^2 - bc) + (1)/(b^2 - ca) + (1)/(c^2 - ab)\) is
\(0\).

How did we get the value?

To find the value of
\((1)/(a^2 - bc) + (1)/(b^2 - ca) + (1)/(c^2 - ab)\) given \(ab + bc + ac = 0\), let's try to express each denominator in terms of the given condition.

Given
\(ab + bc + ac = 0\), we can rewrite each term in the denominators as follows:

1.
\(a^2 - bc = a^2 + ac + ab - 2ac - ab = (a + b)(a - c)\)

2.
\(b^2 - ca = b^2 + ab + bc - 2bc - ab = (b + c)(b - a)\)

3.
\(c^2 - ab = c^2 + ac + bc - 2ac - bc = (c + a)(c - b)\)

Now, substitute these expressions back into the given expression:


\[(1)/((a + b)(a - c)) + (1)/((b + c)(b - a)) + (1)/((c + a)(c - b))\]

Next, factor out the common denominators:


\[((b + c) + (a - c))/((a + b)(a - c)) + ((c + a) + (b - a))/((b + c)(b - a)) + ((a + b) + (c - b))/((c + a)(c - b))\]

Combine the numerators:


\[(2a)/((a + b)(a - c)) + (2b)/((b + c)(b - a)) + (2c)/((c + a)(c - b))\]

Now, substitute the expressions we found for the denominators:


\[(2a)/((a + b)(a - c)) + (2b)/((b + c)(b - a)) + (2c)/((c + a)(c - b))\]

Now, use the given condition
\(ab + bc + ac = 0\) to simplify the expression:


\[(2a)/((a + b)(a - c)) + (2b)/((b + c)(b - a)) + (2c)/((c + a)(c - b))\]


\[= (2a)/((-c)(a - c)) + (2b)/((-a)(b - a)) + (2c)/((-b)(c - b))\]


\[= (2)/(c) + (2)/(a) + (2)/(b)\]

Combine the fractions:


\[= (2(a + b + c))/(abc)\]

Since
\(ab + bc + ac = 0\), \(a + b + c = 0\), so the expression simplifies to:


\[= (2 \cdot 0)/(abc) \\ = 0\]

Therefore, the value of
\((1)/(a^2 - bc) + (1)/(b^2 - ca) + (1)/(c^2 - ab)\) is
\(0\).

User Samuel James
by
8.7k points

Related questions

1 answer
0 votes
160k views
2 answers
0 votes
134k views