Answer:
$7,810
Explanation:
To calculate the total amount Marsha Waide pays back, including interest, you can use the simple interest formula:
\[ \text{Simple Interest} = P \cdot r \cdot t \]
where:
- \( P \) is the principal amount (the initial amount borrowed),
- \( r \) is the interest rate per time period (expressed as a decimal), and
- \( t \) is the time the money is borrowed or invested for, in years.
In this case:
- \( P = \$5,500 \) (the principal amount borrowed),
- \( r = 0.14 \) (14% interest rate expressed as a decimal), and
- \( t = 3 \) years.
Now plug these values into the formula:
\[ \text{Simple Interest} = \$5,500 \cdot 0.14 \cdot 3 \]
Calculate the simple interest:
\[ \text{Simple Interest} = \$5,500 \cdot 0.42 \]
\[ \text{Simple Interest} = \$2,310 \]
Now, to find the total amount Marsha pays back, you add the simple interest to the principal:
\[ \text{Total Amount} = \text{Principal} + \text{Simple Interest} \]
\[ \text{Total Amount} = \$5,500 + \$2,310 \]
\[ \text{Total Amount} = \$7,810 \]
Therefore, Marsha Waide will pay back a total of \$7,810 over the 3-year period, including both the principal and the simple interest.