Answer:
To find the volume of a cylinder, you can use the formula:
![\[ \text{Volume} = \text{Base Area} * \text{Height} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/p9f9goduyk4qje9j7cdv1bcn8eeg67c46p.png)
For a cylinder, the base is a circle, and the formula for the circumference of a circle is:
![\[ \text{Circumference} = 2 * \pi * \text{Radius} \]](https://img.qammunity.org/2024/formulas/mathematics/college/95o1zfwcrp9vifpi9gqzj19xi90a5nfw1g.png)
Given that the circumference of the circular face of the cylinder is 44 cm, we can find the radius first.
![\[ \text{Circumference} = 2 * \pi * \text{Radius} \]\[ 44 = 2 * \pi * \text{Radius} \]](https://img.qammunity.org/2024/formulas/mathematics/college/8ztipqw7y03pogaqt1zyk3z5lngwkfdkf1.png)
Now, let's solve for the radius:
![\[ \text{Radius} = (44)/(2 * \pi) = (22)/(\pi) \]](https://img.qammunity.org/2024/formulas/mathematics/college/cv2mp4hbc0cxpco2vkoei123ftmur1xv4o.png)
The height of the cylinder is given as 120 cm.
Now, the formula for the volume of the cylinder is:
![\[ \text{Volume} = \pi * \text{Radius}^2 * \text{Height} \]](https://img.qammunity.org/2024/formulas/mathematics/college/hn7z4jo5krhii8nk3sev282p3z89vi1rxf.png)
Substitute the values:
![\[ \text{Volume} = \pi * \left((22)/(\pi)\right)^2 * 120 \]](https://img.qammunity.org/2024/formulas/mathematics/college/gny88fxb7evx6ch62yyf6156blu9aifmqe.png)
![\[ \text{Volume} = \pi * (4120 84)/(\pi^2) * \]](https://img.qammunity.org/2024/formulas/mathematics/college/6bxgsew2uthvsev16wddn09aukf19x8tun.png)
![\[ \text{Volume} = (484 * 120)/(\pi) \]](https://img.qammunity.org/2024/formulas/mathematics/college/nm3dcdxt4t5gg4yi7janpgdaczt18y1s1h.png)
![\[ \text{Volume} = (58080)/(\pi) \approx 18466.91 \text{ cubic centimeters} \]](https://img.qammunity.org/2024/formulas/mathematics/college/i7u733rgsafon1vcb845eh9tul89o1hsj6.png)
