Answer:
79.4° to the nearest tenth of a degree
Explanation:
You are trying to find the angle opposite the side of length 27.
Let the length of that side be c and a and b be the lengths of the other two sides and let C be the measure of the angle you are looking for
Using the law of cosines
![c = \sqrt{a^(2) + b^(2) - 2abcos C}](https://img.qammunity.org/2022/formulas/mathematics/college/nteo4fw3j8qp60zzzmlgq0z96vfa9y3z5y.png)
![27 = \sqrt{19^(2) + 23^(2) - 2(19)(23)cosC}](https://img.qammunity.org/2022/formulas/mathematics/college/xb7o4umqcr3nn2hs7tad1kbwlgybh8ac04.png)
![27^(2) = 19^(2) + 23^(2) - 2(19)(23)cosC](https://img.qammunity.org/2022/formulas/mathematics/college/yub8u3zw3ldxlqm5x1x659q1eem95mrrq1.png)
729 = 361 + 529 - 874cosC
729 = 890 - 874cosC
-161 = -874cosC
-161/-874 = cosC
.1842105.... = cosC
C = arccos .1842105.... = 79.4° to the nearest tenth of a degree