88.4k views
1 vote
Find the 1st derivative and the 2nd derivative of the function.

1. f(x) = 2x^6 + 8x^3= 4x - 120

User Dan Harrin
by
8.1k points

1 Answer

4 votes

Answer:


f'(x) = 12x^5 + 24x^2 - 4


f''(x) = 60x^4 + 48x

Explanation:

We can find the derivative and second derivative of the polynomial function:


f(x) = 2x^6 + 8x^3 - 4x - 120

using the power and sum and difference rules:


  • \left[\frac{}{}x^a\frac{}{}\right]' = ax^(a-1)

  • \left[\frac{}{}f(x) + g(x)\frac{}{}\right]' = f'(x) + g'(x)

Taking the first derivative of the function, we get:


f'(x) = \left[\frac{}{}2x^6 + 8x^3 - 4x - 120\frac{}{}\right]'

↓ applying the sum and difference rule


f'(x) = \left[\frac{}{}2x^6\,\right]' + \left[\frac{}{}8x^3\,\right]' - \left[\frac{}{}4x\,\right]'- \left[\frac{}{}120\,\right]'

↓ taking out constants


f'(x) = 2\left[\frac{}{}x^6\,\right]' + 8\left[\frac{}{}x^3\,\right]' - 4\left[\frac{}{}x\,\right]'- \left[\frac{}{}120\,\right]'

↓ applying the power rule


f'(x) = 2\left[\frac{}{}6x^5\,\right] + 8\left[\frac{}{}3x^2\,\right] - 4\left[\frac{}{}1x^0\,\right] - 0

↓ combining like terms


\boxed{f'(x) = 12x^5 + 24x^2 - 4}

We can repeat this process to get the second derivative:


f''(x) = 12(5x^4) + 24(2x)


\boxed{f''(x) = 60x^4 + 48x}

User Akaphenom
by
8.2k points

No related questions found