Answer:


Explanation:
We can find the derivative and second derivative of the polynomial function:

using the power and sum and difference rules:
Taking the first derivative of the function, we get:
![f'(x) = \left[\frac{}{}2x^6 + 8x^3 - 4x - 120\frac{}{}\right]'](https://img.qammunity.org/2024/formulas/mathematics/high-school/r2jlqvckdxhkkzufvtioyoqfm9gfolninz.png)
↓ applying the sum and difference rule
![f'(x) = \left[\frac{}{}2x^6\,\right]' + \left[\frac{}{}8x^3\,\right]' - \left[\frac{}{}4x\,\right]'- \left[\frac{}{}120\,\right]'](https://img.qammunity.org/2024/formulas/mathematics/high-school/5k0j0yjwr8f1z2htri55qcctf85tq4oxw6.png)
↓ taking out constants
![f'(x) = 2\left[\frac{}{}x^6\,\right]' + 8\left[\frac{}{}x^3\,\right]' - 4\left[\frac{}{}x\,\right]'- \left[\frac{}{}120\,\right]'](https://img.qammunity.org/2024/formulas/mathematics/high-school/6c9343w0t7qmc8utd4k8pwoz7mbvd04nou.png)
↓ applying the power rule
![f'(x) = 2\left[\frac{}{}6x^5\,\right] + 8\left[\frac{}{}3x^2\,\right] - 4\left[\frac{}{}1x^0\,\right] - 0](https://img.qammunity.org/2024/formulas/mathematics/high-school/nks3jtjkoabant6h2wnt7fp5axgnnour93.png)
↓ combining like terms

We can repeat this process to get the second derivative:

