Final answer:
The correct answer is option c) cos(u) sin(v) - sin(u) cos(v).
Step-by-step explanation:
The correct answer is option c) cos(u) sin(v) - sin(u) cos(v).
To find sin(u-v) using the given values of sin(u) and sin(v), we can use the trigonometric identity:
sin(u-v) = sin(u) cos(v) - cos(u) sin(v)
Plugging in the given values, we have:
sin(u-v) = sin(u) * sin(v) - cos(u) * cos(v)
Therefore, the correct answer is c) cos(u) sin(v) - sin(u) cos(v).