The Lunatik is approximately 3.40 x 10^8 meters from the center of Eqrgp when it momentarily does not change speed or direction due to the gravitational equilibrium point.
To determine the distance from the center of Eqrgp to the Lunatik when it momentarily does not change speed or direction, we can use the concept of the gravitational equilibrium point between the planet and its moon. This point is where the gravitational forces from the planet and the moon balance out.
The gravitational force between Eqrgp and the Lunatik is given by Newton's law of gravitation:
![\[ F_{\text{planet}} = \frac{G \cdot M_{\text{planet}} \cdot m_{\text{Lunatik}}}{r_{\text{planet}}^2} \]](https://img.qammunity.org/2024/formulas/physics/college/e69iw3qzu7i2kenp68p5hnmbw81rrlweoo.png)
The gravitational force between the moon and the Lunatik is:
![\[ F_{\text{moon}} = \frac{G \cdot M_{\text{moon}} \cdot m_{\text{Lunatik}}}{r_{\text{moon}}^2} \]](https://img.qammunity.org/2024/formulas/physics/college/4ztjldacw57hl60rpkld05bf5kw4ap37io.png)
At the gravitational equilibrium point, these forces are equal:
![\[ F_{\text{planet}} = F_{\text{moon}} \]](https://img.qammunity.org/2024/formulas/physics/college/d0qwfxu8npx8mhf971k6m7no9pvn064wna.png)
Setting the two expressions equal to each other and solving for the distance
from the center of Eqrgp:
![\[ \frac{G \cdot M_{\text{planet}} \cdot m_{\text{Lunatik}}}{r_{\text{planet}}^2} = \frac{G \cdot M_{\text{moon}} \cdot m_{\text{Lunatik}}}{(d - r_{\text{planet}})^2} \]](https://img.qammunity.org/2024/formulas/physics/college/cqh4gxosw2tv51rvj76pdc3j7bmpa42nnh.png)
Where d is the distance between the centers of Eqrgp and its moon.
Simplify and solve for

![\[ r_{\text{planet}} = \frac{d \cdot M_{\text{planet}}}{M_{\text{planet}} + M_{\text{moon}}} \]](https://img.qammunity.org/2024/formulas/physics/college/80jmysoxv6wse1rf1h8kzxmltcejwqzt9r.png)
Substitute the given values:
![\[ r_{\text{planet}} = \frac{(3.57 * 10^8 \, \text{m}) \cdot (5.87 * 10^(24) \, \text{kg})}{(5.87 * 10^(24) \, \text{kg}) + (1.63 * 10^(23) \, \text{kg})} \]](https://img.qammunity.org/2024/formulas/physics/college/qapbjpwb9y6z7kany7g939nqh60yv5e1e7.png)
Calculate the result:
![\[ r_{\text{planet}} \approx 3.40 * 10^8 \, \text{m} \]](https://img.qammunity.org/2024/formulas/physics/college/2y1l60vk8u4n7b0hh173jnrp99clvoa550.png)