Answer:
I've solved all of the above for you :)
Explanation:
3q² + 7 = 55
3q² = + 7 - 7 = 55 - 7
3q² = 48
3q²/3 = 48/3
q² = 12
q = 2√3
√p - 4 = - 5
p - 4 = (-5)²
p - 4 + 4 = 25 + 4
p = 29
5√a/2 = 40
5√a/2 × 2 = 40 × 2
5√a = 80
5√a/5 = 80/5
√a = 16
a = 256
c³ - 4 = 23
c³ - 4 + 4 = 23 + 4
c³ = 27
c = 3
(k + 3)² = 4
k² + 6k + 9 = 4
k² + 6k + 9 - 4 = 0
k² + 6k + 5 = 0
k² + k + 5k + 5 = 0
k(k + 1) + 5(k + 1) = 0
(k + 5) (k + 1) = 0
k = (-5) or (-1)
√s + 4 = 6
s + 4 = (6)²
s + 4 - 4 = 36 - 4
s = 32
(√f - 5) = (√7 - f)
(√f - 5)² = (√7 - f)²
f - 5 = 7 - f
f - 5 + 5 + f = 7 + 5 - f + f
2f/2 = 12/2
f = 6
∛j + 9 = 0
∛j + 9 - 9 = -9
∛j = (-9)
j = (-9)³
j = (-729)
b² - 1 = 24
b² - 1 + 1 = 24 + 1
b² = 25
√b² = √25
b = 5
13 = (w - 2)² + 5
13 = w² - 4w + 4 + 5
13 - 9 = w² - 4w
w² - 4w = 4
w² - 4w - 4 = 0
w² - 2w - 2w - 4 = 0
w(w - 2) - 2(w - 2) = 0
(w - 2) (w - 2) = 0
w = 2 or 2
12 = 4√2x + 1
12/4 = 4√2x + 1/4
3 = √2x + 1
√2x + 1 = 3
2x + 1 = 9
2x + 1 - 1 = 9 - 1
2x/2 = 8/2
x = 4
(g + 1)³ = (-8)
g³ + 1³ + 3g(g + 1) = (-8)
g³ + 1 + 3g² + 3g = (-8)
g³ + 3g² + 3g = (-8) - 1
g³ + 3g² + 3g = -9
g³ + 3g² + 3g + 9 = 0
g = (-3)
∜(5m + 1) = 4
[∜(5m + 1)]⁴ = (4)⁴
5m + 1 = 256
5m + 1 - 1 = 256 - 1
5m/5 = 255/5
m = 51
∛(y³ - 19) = 2
(y³ - 19) = (2)³
y³ - 19 = 8
y³ - 19 + 19 = 8 + 19
y³ = 27
y = 3