Final answer:
To integrate ∫(sec²θ - 1) dθ, we can rewrite sec²θ - 1 as tan²θ. Then, using trigonometric identities, we integrate both terms separately and add the results together to get the final answer: ∫(sec²θ - 1) dθ = secθ - ln|cosθ| + C.
Step-by-step explanation:
To integrate ∫(sec²θ - 1) dθ, we can rewrite sec²θ - 1 as tan²θ.
Then, using the trigonometric identity tan²θ + 1 = sec²θ, we have:
∫(tan²θ) dθ = ∫(tanθ)(tanθ) dθ = ∫tanθ secθ dθ - ∫tanθ dθ
Now we can integrate both terms separately:
∫tanθ secθ dθ = secθ + C1
∫tanθ dθ = -ln|cosθ| + C2
Adding the two results together, we get the final answer: ∫(sec²θ - 1) dθ = secθ - ln|cosθ| + C