6.9k views
1 vote
Find the particular solution of the differential equation?
/=5^3+9^2, when =1, =8

Find the particular solution of the differential equation? /=5^3+9^2, when =1, =8-example-1
User Odalis
by
5.4k points

1 Answer

6 votes

Answer:


\displaystyle s = (5t^4)/(4) + (9)/(t) - (9)/(4)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

  • Exponential Rule [Rewrite]:
    \displaystyle b^(-m) = (1)/(b^m)

Calculus

Derivatives

Derivative Notation

Solving Differentials - Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Explanation:

*Note:

Ignore the Integration Constant C on the left hand side of the differential equation when integrating.

Step 1: Define


\displaystyle (ds)/(dt) = 5t^3 + (9)/(t^2)

t = 1

s = 8

Step 2: Integrate

  1. [Derivative] Rewrite [Leibniz's Notation]:
    \displaystyle ds = (5t^3 + (9)/(t^2))dt
  2. [Equality Property] Integrate both sides:
    \displaystyle \int {} \, ds = \int {(5t^3 + (9)/(t^2))} \, dt
  3. [Left Integral] Reverse Power Rule:
    \displaystyle s = \int {(5t^3 + (9)/(t^2))} \, dt
  4. [Right Integral] Rewrite [Integration Property - Addition]:
    \displaystyle s = \int {5t^3} \, dt + \int {(9)/(t^2)} \, dt
  5. [Right Integrals] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle s = 5\int {t^3} \, dt + 9\int {(1)/(t^2)} \, dt
  6. [Right Integrals] Rewrite [Exponential Rule - Rewrite]:
    \displaystyle s = 5\int {t^3} \, dt + 9\int {t^(-2)} \, dt
  7. [Right Integrals] Reverse Power Rule:
    \displaystyle s = 5((t^4)/(4)) + 9((t^(-1))/(-1)) + C
  8. [Right Integrals] Rewrite [Exponential Rule - Rewrite]:
    \displaystyle s = 5((t^4)/(4)) + 9((1)/(t)) + C
  9. Multiply:
    \displaystyle s = (5t^4)/(4) + (9)/(t) + C

Step 3: Solve

  1. Substitute in variables:
    \displaystyle 8 = (5(1)^4)/(4) + (9)/(1) + C
  2. Evaluate exponents:
    \displaystyle 8 = (5)/(4) + (9)/(1) + C
  3. Divide:
    \displaystyle 8 = (5)/(4) + 9 + C
  4. Add:
    \displaystyle 8 = (41)/(4) + C
  5. [Subtraction Property of Equality] Isolate C:
    \displaystyle (-9)/(4) = C
  6. Rewrite:
    \displaystyle C = (-9)/(4)

Particular Solution:
\displaystyle s = (5t^4)/(4) + (9)/(t) - (9)/(4)

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Differentials Equations and Slope Fields

Book: College Calculus 10e

User Bitops
by
5.2k points