the equation of the line
is
. The coordinates of point (Q) are
. Since
(positive), (R) is on the same side.
(a) Equation of the Line:
The equation of the line
passing through points
and
can be represented in vector form as follows:
![\[ \mathbf{r} = \mathbf{P_1} + t(\mathbf{P_2} - \mathbf{P_1}) \]](https://img.qammunity.org/2024/formulas/mathematics/college/po61j370cme8hpxhzqn01zi85se4mx2qed.png)
Where:
-
is a vector representing any point on the line,
-
is the position vector of point
,
-
is the position vector of point
, and
-
is a scalar parameter.
Let's calculate the direction vector
:
![\[ \mathbf{P_2} - \mathbf{P_1} = \langle -4 - 2, -2 - 9, 8 - (-4) \rangle = \langle -6, -11, 12 \rangle \]](https://img.qammunity.org/2024/formulas/mathematics/college/t44ddnsjgahkkue0jvle3d7xe5ckbvmor1.png)
Now, the equation of the line is:
![\[ \mathbf{r} = \langle 2, 9, -4 \rangle + t \langle -6, -11, 12 \rangle \]](https://img.qammunity.org/2024/formulas/mathematics/college/m46ikklfuo771wn0ki46c7zqqqudsf9h1c.png)
So, the equation of the line
is:
![\[ x = 2 - 6t, \quad y = 9 - 11t, \quad z = -4 + 12t \]](https://img.qammunity.org/2024/formulas/mathematics/college/8dny1eglwg4ay8len0rw1bpq20e8shq4ge.png)
(b) Coordinates of Point Q at 40% of the Distance:
To find the point
at 40% of the distance from
, we can use the parameter
:
![\[ \mathbf{Q} = \mathbf{P_1} + 0.4 (\mathbf{P_2} - \mathbf{P_1}) \]](https://img.qammunity.org/2024/formulas/mathematics/college/xzpj99v2rj7j2toif023jzmo128pa37ruj.png)
Calculate
:
![\[ \mathbf{Q} = \langle 2, 9, -4 \rangle + 0.4 \langle -6, -11, 12 \rangle \]](https://img.qammunity.org/2024/formulas/mathematics/college/65xqtp9eqnqjnucnz5hqjblw291nr7kd5n.png)
![\[ \mathbf{Q} = \langle 2, 9, -4 \rangle + \langle -2.4, -4.4, 4.8 \rangle \]](https://img.qammunity.org/2024/formulas/mathematics/college/q8i88xzqynnndnhr2cmi4gimdo2bqndc8w.png)
![\[ \mathbf{Q} = \langle -0.4, 4.6, 0.8 \rangle \]](https://img.qammunity.org/2024/formulas/mathematics/college/6iyt0w701ied7przl2cm9pjeke2i2x455x.png)
So, the coordinates of point (Q) are
.
(c) Distance from Point R to the Line:
The distance
between a point
and a line with direction vector
and passing through the point
is given by the formula:
![\[ d = \frac{\left|(\mathbf{R} - \mathbf{P_0}) \cdot \mathbf{v}\right|}{\|\mathbf{v}\|} \]](https://img.qammunity.org/2024/formulas/mathematics/college/4x8d6azjxoar2q3zhprvqdjdveax3jhy2l.png)
Here,
represents the dot product, and
is the magnitude of

Let
be the point, and
be the direction vector. Also, let
.
Calculate the distance:
![\[ \mathbf{R} - \mathbf{P_0} = \langle 3 - 2, 2 - 9, 1 - (-4) \rangle = \langle 1, -7, 5 \rangle \]](https://img.qammunity.org/2024/formulas/mathematics/college/ak1lnrjp6f6jet7gay27r1spyywmn1xrib.png)
![\[ \|\mathbf{v}\| = √((-6)^2 + (-11)^2 + 12^2) = √(36 + 121 + 144) = √(301) \]](https://img.qammunity.org/2024/formulas/mathematics/college/euwuhn1h6clsarrz6fa281p1yxyrmtg5rm.png)
![\[ \left|(\mathbf{R} - \mathbf{P_0}) \cdot \mathbf{v}\right| = | \langle 1, -7, 5 \rangle \cdot \langle -6, -11, 12 \rangle | = |-6 + 77 + 60| = 131 \]](https://img.qammunity.org/2024/formulas/mathematics/college/puxb8w57j2ojorrjlyrpgsu1g54fjogy8c.png)
![\[ d = (131)/(√(301)) \]](https://img.qammunity.org/2024/formulas/mathematics/college/jagkft8t65aaiywepnh9wx27jyhou0anr9.png)
So, the distance (d) is given by
. To determine whether (R) is on the same side or the opposite side of
, we can check the sign of
.
If it's positive, (R) is on the same side; if negative, it's on the opposite side. In this case, since
(positive), (R) is on the same side.