196k views
2 votes
Calculate the derivative

using Part 2 of the Fundamental Theorem of Calculus.

Calculate the derivative using Part 2 of the Fundamental Theorem of Calculus.-example-1

1 Answer

0 votes

Answer:

Explanation:


(d)/(dx)\int_(x^3)^{e^(2x)}ln(t)dt=(d)/(dx)\left(F(e^(2x))-F(x^3)\right)=F'(e^(2x))(e^(2x))'-F'(x^3)(x^3)'=\\=2e^(2x)F'(e^(2x))-3x^2F'(x^3)=2e^(2x)\ln(e^(2x))-3x^2\ln(x^3)=4xe^(2x)-9x^2\ln\abs x

User Sprax
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories