19.8k views
19 votes
The acceleration of an object is =4 m/s^2.?

The acceleration of an object is =4 m/s^2. Find the distance of the object from the origin under the initial conditions (0)=9 m, (0)=16 m/s.

(Use symbolic notation and fractions where needed.)

The acceleration of an object is =4 m/s^2.? The acceleration of an object is =4 m-example-1

1 Answer

7 votes

Answer:


\displaystyle s(t) = (2t^3)/(3) + 16t + 9

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Calculus

Antiderivatives - Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Explanation:

*Note:

Velocity is the derivative of Position, and Acceleration is derivative of Velocity.

Velocity is integration of Acceleration, Position is integration of Velocity.

Step 1: Define

a(t) = 4t m/s²

s(0) = 9 m

v(0) = 16 m/s

Step 2: Find Velocity Function

Integration Pt. 1

  1. [Velocity] Set up integral:
    \displaystyle v(t) = \int {a(t)} \, dt
  2. [Velocity] Substitute in function:
    \displaystyle v(t) = \int {4t} \, dt
  3. [Velocity] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle v(t) = 4\int {t} \, dt
  4. [Velocity] Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle v(t) = 4((t^2)/(2)) + C
  5. [Velocity] Multiply:
    \displaystyle v(t) = 2t^2 + C

Finding C

  1. [Velocity] Substitute in initial condition:
    \displaystyle v(0) = 2(0)^2 + C
  2. [Velocity] Substitute in function value:
    \displaystyle 16 = 2(0)^2 + C
  3. [Velocity] Evaluate exponents:
    \displaystyle 16 = 2(0) + C
  4. [Velocity] Multiply:
    \displaystyle 16 = C
  5. Rewrite:
    \displaystyle C = 16

Velocity Function:
\displaystyle v(t) = 2t^2 + 16

Step 3: Find Position Function

Integration Pt. 2

  1. [Position] Set up integral:
    \displaystyle s(t) = \int {v(t)} \, dt
  2. [Position] Substitute in function:
    \displaystyle s(t) = \int {2t^2 + 16} \, dt
  3. [Position] Rewrite [Integration Property - Addition]:
    \displaystyle s(t) = \int {2t^2} \, dt + \int {16} \, dt
  4. [Position] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle s(t) = 2\int {t^2} \, dt + 16\int {} \, dt
  5. [Position] Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle s(t) = 2((t^3)/(3)) + 16t + C
  6. [Position] Multiply:
    \displaystyle s(t) = (2t^3)/(3) + 16t + C

Finding C

  1. [Position] Substitute in initial condition:
    \displaystyle s(0) = (2(0)^3)/(3) + 16(0) + C
  2. [Position] Substitute in function value:
    \displaystyle 9 = (2(0)^3)/(3) + 16(0) + C
  3. [Position] Evaluate exponents:
    \displaystyle 9 = (2(0))/(3) + 16(0) + C
  4. [Position] Multiply:
    \displaystyle 9 = (0)/(3) + C
  5. [Position] Divide:
    \displaystyle 9 = C
  6. [Position] Rewrite:
    \displaystyle C = 9

Position Function:
\displaystyle s(t) = (2t^3)/(3) + 16t + 9

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration

Book: College Calculus 10e

User Eldarerathis
by
4.8k points