189k views
4 votes
Find the equation of the line that has a slope of -5 and passes through the point (7,9). Which of the following represents the equation of the line?

A. y = -5x + 44
B. y = -5x + 26
C. y = -5x + 14
D. y = -5x + 64

1 Answer

4 votes

Final answer:

The equation of the line with a slope of -5 that passes through the point (7,9) is y = -5x + 44. This is derived using the point-slope form and simplifying to get the slope-intercept form of the equation.

Step-by-step explanation:

To find the equation of the line with a slope of -5 that passes through the point (7,9), we can use the point-slope form of a linear equation, which is y - y1 = m(x - x1), where m is the slope and (x1, y1) is a point on the line. Plugging in the given values, we have y - 9 = -5(x - 7).

Now solve for y:

  • y - 9 = -5x + 35
  • Add 9 to both sides to get y by itself:
  • y = -5x + 35 + 9
  • y = -5x + 44

So, the equation of the line is y = -5x + 44, which corresponds to option A.

User Kylerthecreator
by
7.9k points