86.6k views
2 votes
Ms. Suzuki invested $14,000 in two accounts, one yielding 8% interest and the other yielding 10%. If she received a total of $1,220 in interest at the end of the year, how much did she invest in each account?

a) $6,000 at 8%, $8,000 at 10%
b) $8,000 at 8%, $6,000 at 10%
c) $7,000 at 8%, $7,000 at 10%
d) $9,000 at 8%, $5,000 at 10%

User Yshk
by
8.4k points

1 Answer

3 votes

Final answer:

Ms. Suzuki invested $9,000 at 8% and $5,000 at 10%. This was determined by setting up a system of equations based on the total amount invested and the total interest earned, then solving for the amounts in each account.

Step-by-step explanation:

Ms. Suzuki invested $14,000 in two different interest-bearing accounts, one at 8% annual interest and the other at 10% annual interest. She received a total of $1,220 in interest at the end of the year. To determine how much she invested in each account, we can set up a system of equations:

  • Let x be the amount invested at 8%.
  • Let y be the amount invested at 10%.

The total amount invested is $14,000, which leads to our first equation: x + y = 14,000

The total interest from both accounts is $1,220, leading to our second equation based on the interest rates: 0.08x + 0.10y = 1,220

Solving these simultaneous equations, we start by multiplying the second equation by 100 to clear the decimals: 8x + 10y = 122,000

Next, we can multiply the first equation by 8 to help eliminate a variable: 8x + 8y = 112,000

Subtracting the fourth equation from the third gives us: 2y = 10,000

Dividing through by 2, we find that y = $5,000. Substituting y into the first equation x + 5,000 = 14,000 gives us x = $9,000.

Thus, Ms. Suzuki invested $9,000 at 8% and $5,000 at 10%.

Answer choice (d) is correct.

User Kingsley
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories