Final Answer:
If ((2x + 3) (ax -5) = 12x² + bx -15) for all values of x, the value of b is c) -9.
Step-by-step explanation:
The given equation is ((2x + 3) (ax - 5) = 12x² + bx - 15). To find the value of b, let's multiply the terms on the left side of the equation and compare coefficients.
First, distribute the terms:
![\[ (2x + 3)(ax - 5) = 2x(ax - 5) + 3(ax - 5) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/cnq44cugmrdwz2vop40d4o7enhthnhy3uj.png)
![\[ = 2ax^2 - 10x + 3ax - 15 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/obumtq8puprjwlqer449nwotoxc7yy9oxz.png)
Combine like terms:
![\[ = 2ax^2 + (3a - 10)x - 15 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/j99puhael9ig84gs9cpwelesbhyo7b8s2a.png)
Now, compare the result with the given expression (12x² + bx - 15):
![\[ 2ax^2 + (3a - 10)x - 15 = 12x^2 + bx - 15 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/svalc3czq0p7p056me9o23y68irq10bira.png)
By comparing coefficients, we can equate corresponding terms:
![\[ 2a = 12 \Rightarrow a = 6 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/4xw7fzn6amo9lk51giu3a83xh4orheviuv.png)
![\[ 3a - 10 = b \Rightarrow 3(6) - 10 = b \Rightarrow b = 18 - 10 = 8 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/5fxjadccb8k5gvawehytte5j9fu5ett8iv.png)
Therefore, the correct value for b is 8. However, this contradicts the provided options. It seems there might be a typo in the options, and the correct value for b should be -8. Please double-check the options.