175k views
0 votes
Show that cos A + cos(120⁰ + A) + cos(120⁰ - A) = 0​

1 Answer

4 votes

Final answer:

Using the trigonometric identity cos(A + B) = cos A cos B - sin A sin B, we can simplify the expression cos A + cos(120⁰ + A) + cos(120⁰ - A) is equal to 0.

Step-by-step explanation:

We can use the trigonometric identity cos(A + B) = cos A cos B - sin A sin B to rewrite the equation:

cos A + cos(120⁰ + A) + cos(120⁰ - A)

= cos A + [cos 120⁰ cos A - sin 120⁰ sin A] + [cos 120⁰ cos A + sin 120⁰ sin A]

= cos A + cos 120⁰ cos A + cos 120⁰ cos A - sin 120⁰ sin A + sin 120⁰ sin A

= cos A + 2 cos 120⁰ cos A

= cos A - cos A

= 0

Therefore, cos A + cos(120⁰ + A) + cos(120⁰ - A) = 0.

User Magic
by
8.2k points

Related questions

1 answer
5 votes
214k views
asked Oct 24, 2024 16.5k views
Astroluv asked Oct 24, 2024
by Astroluv
7.9k points
2 answers
0 votes
16.5k views