88.4k views
4 votes
What is the solution set for the exponential inequality
4²x<16?

1 Answer

6 votes

Final answer:

To solve the exponential inequality 4^2x < 16, we express both sides with the same base and find that x < 1. Thus, the solution set includes all real numbers less than 1.

Step-by-step explanation:

The exponential inequality in question is 42x < 16.

To solve this inequality, we need to express both sides with the same base if possible. Since 16 is 4 squared (42), we can rewrite the inequality as 42x < 42.

Now, since we have the same base, we can drop the bases and set the exponents equal to each other, that is 2x < 2.

Dividing both sides by 2, we find that x < 1. Therefore, the solution set for the inequality is all real numbers less than 1.

User Blindmeis
by
8.5k points