Final answer:
The y-intercept of the quadratic function f(x) = (x + 3)(x + 6) is found by substituting x with 0, which gives us the point (0, 18).
Step-by-step explanation:
To find the y-intercept of the quadratic function f(x) = (x + 3)(x + 6), you need to evaluate the function when x = 0. The y-intercept is the point where the graph of the function intersects the y-axis. At this point, x is always zero. So, we substitute x with 0 in the function:
f(0) = (0 + 3)(0 + 6) = 3 × 6 = 18
Therefore, the y-coordinate of the y-intercept is 18, and since the y-intercept occurs when x = 0, the coordinates of the y-intercept are (0, 18).