163k views
4 votes
A recipe for soup calls for 2 1/3 cups of water and 1 3/8 cups of milk. How much more water than milk does the recipe call for?

User Nomar
by
8.3k points

1 Answer

0 votes

Final answer:

To determine how much more water than milk is needed, convert the mixed numbers to improper fractions, find a common denominator, and subtract the milk fraction from the water fraction. The result is that the recipe calls for 23/24 cups more water than milk.

Step-by-step explanation:

The student asks how much more water than milk a soup recipe requires if it calls for 2 1/3 cups of water and 1 3/8 cups of milk. To find out, we need to compute the difference between the two quantities:

  • First, convert the mixed numbers to improper fractions. For water, 2 1/3 cups becomes 7/3 cups (2*3+1=7). For milk, 1 3/8 cups becomes 11/8 cups (1*8+3=11).
  • Next, find a common denominator, which is 24 in this case, and convert both fractions: Water becomes 56/24 cups (7*8=56), and milk becomes 33/24 cups (11*2=33).
  • Subtract the milk from the water: 56/24 - 33/24 = 23/24 cups.

Therefore, the recipe calls for 23/24 cups more water than milk.

User SirRupertIII
by
7.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories