100k views
2 votes
Simplify: ∼(p→q)∧((∼p∧q)∨∼(p∨q))=F.

a) ∼p→(p∨∼(p∨q))=p∨q
b) ∼p→(p∨∼(p∨q))=F
c) ∼p→(p∨∼p)=F
d) ∼p→(p∨∼(p∨q))=∼(p∧q)

User Crusaderky
by
8.2k points

1 Answer

5 votes

Final answer:

To simplify the given expression, ∼(p→q)∧((∼p∧q)∨∼(p∨q)), we can break it down step by step. By applying logical equivalences and properties like the distributive property, we can simplify the expression to ∼p∨(q∧∼(p∨q)).

Step-by-step explanation:

To simplify the expression ∼(p→q)∧((∼p∧q)∨∼(p∨q)), we can break it down step by step:

  1. Step 1: Simplify ∼(p→q)
  2. Using the logical equivalence of ¬(p→q) = p∧¬q, we can rewrite this as ∼(p∧¬q).
  3. Step 2: Simplify (∼p∧q)∨∼(p∨q)
  4. Using the distributive property of ∧ over ∨, we can expand this expression to (∼p∨∼(p∨q))∧(q∨∼(p∨q)).
  5. Step 3: Simplify (∼p∨∼(p∨q))∧(q∨∼(p∨q))
  6. Using the distributive property again, we can rewrite the expression as (∼p∧q)∨(∼p∧∼(p∨q))∨(q∧q)∨(q∧∼(p∨q)).
  7. Step 4: Simplify ∼(p∧q)
  8. Using the logical equivalence of ¬(p∧q) = ¬p∨¬q, we can rewrite this as (∼p∨∼q).
  9. Step 5: Simplify (∼p∧q)∨(∼p∧∼(p∨q))∨(q∧q)∨(q∧∼(p∨q))
  10. By applying the identity law of ∧ and the domination law of ∨, we can simplify this to (∼p∨∼q)∨(q∧∼(p∨q)).
  11. Step 6: Simplify (∼p∨∼q)∨(q∧∼(p∨q))
  12. Using the logical equivalence of p∨(q∧∼p) = (p∨q)∧(p∨∼p), we can rewrite this as ∼p∨(q∧∼(p∨q)).

Therefore, the simplified expression is ∼p∨(q∧∼(p∨q)).

User HeberLZ
by
8.4k points