Final answer:
To solve the given system of equations, we can use the method of substitution. By substituting the values of x, y, and z from the given answer choices into the equation, we can determine the correct solution. The correct answer is d) X = -1, y = -2, z = 5.
Step-by-step explanation:
To solve the system of equations:
X + y + z = 2
Ex - y - 5z = -36
-X - Y - 8Z = -30
First, we can add the second and third equations to eliminate the y variable:
Ex - y - 5z + (-X - Y - 8Z) = -36 + (-30)
E - X - Y - y - Y = -66
(E - 1) X - (1 + 2Y) = -66
Next, we substitute the value of x from the first equation into this equation:
(E - 1)(2 - y - z) - (1 + 2Y) = -66
Simplifying, we get: (E - 1)(-y - z) - (1 + 2Y) = -66
Next, we substitute the values of y and z from the first equation into this equation:
(E - 1)(-1 - z) - (1 + 2(2 - x - z)) = -66
Expanding and combining like terms, we get: (E - 1)(-1 - z) - (1 + 4 - 2x - 2z) = -66
(1 - E)(1 + z) = -1 - 2 + 2x + 2z - 66
(1 - E)(1 + z) = 2x + 2z - 67
Now, we can substitute the values of x, y, and z from the given answer choices into this equation to find the correct solution. Only option d) X = -1, y = -2, and z = 5 satisfies this equation.
Therefore, the correct answer is d) X = -1, y = -2, z = 5.