Using the law of sines, the triangles are solved as: 2. m∠A = 87°; b ≈ 4.98; c ≈ 1.95 3. B = 21°; m∠C = 124°; c ≈ 16.
How to apply the Law of Sines?
To solve triangle ABC, you can use the fact that the sum of the angles in a triangle is always 180 degrees.
2. Given:
m∠B = 71°,
m∠C = 22°, and
side a = 5.20.
Find m∠A:
m∠A = 180° - m∠B - m∠C
m∠A = 180 - 71 - 22
m∠A = 87°
Use the Law of Sines to find the other two sides (\(b\) and \(c\)) in the triangle:


b ≈ 4.98

c ≈ 1.95
3. Given:
m∠A = 35°, a = 11; b = 7
Find m∠B using a/sin A = b/sin B:
11/sin 35 = 7/sin B
sin B = 7 * sin 35 / 11
sin B = 0.3650

B = 21°
m∠C = 180 - 35 - 21
m∠C = 124°
Find c using a/sin A = c/sin C:
11/sin 35 = c/sin 124
c = 11 * sin 124 / sin 35
c ≈ 16