50.5k views
2 votes
Perform the indicated sequence of row operations on the given augmented matrix. [1 -1 1 8 0 1 -12 -15 0 5 -3 -18] for -5Rv2+Rv3

1 Answer

3 votes

The resulting augmented matrix after performing the row operation is:


\[\begin{bmatrix}1 & -1 & 1 & 8 \\0 & -5 & 60 & 75 \\0 & 0 & -63 & 57\end{bmatrix}\]

To perform the row operation
\(-5R_2 + R_3\), where
\(R_2\) and
\(R_3\) are the second and third rows, respectively, on the given augmented matrix, you'll apply the operation to each element in the corresponding rows.

Starting matrix:


\[\begin{bmatrix}1 & -1 & 1 & 8 \\0 & 1 & -12 & -15 \\0 & 5 & -3 & -18\end{bmatrix}\]

Row operation:
\(-5R_2 + R_3\)

1. Multiply the second row by -5:


\[\begin{bmatrix}1 & -1 & 1 & 8 \\0 & -5 & 60 & 75 \\0 & 5 & -3 & -18\end{bmatrix}\]

2. Add the result to the third row:


\[\begin{bmatrix}1 & -1 & 1 & 8 \\0 & -5 & 60 & 75 \\0 & 0 & -63 & 57\end{bmatrix}\]

The resulting augmented matrix after performing the row operation is:


\[\begin{bmatrix}1 & -1 & 1 & 8 \\0 & -5 & 60 & 75 \\0 & 0 & -63 & 57\end{bmatrix}\]

User Nate Diamond
by
8.4k points