![\[ A^(-1) \approx \begin{bmatrix} 0.139051 & -0.037482 \\ -2.086455 & 0.093153 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ujy0j1l7fx045lsl7cstmm2uo7ujjxcl47.png)
Given matrix
:
![\[ A = \begin{bmatrix} (4)/(3) & 0.8 \\ 26 & √(3) \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/tigt7lm3nr9m8mocih8nv4flovbcq6gjka.png)
Calculate the determinant (\(ad - bc\)):
![\[ \text{Determinant} = \left((4)/(3) \cdot √(3)\right) - (0.8 \cdot 26) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/a244vwsnihjglbqn1o7qjjxqiyb713lzfi.png)
![\[ \text{Determinant} = (4√(3))/(3) - 20.8 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/t0xw8n68xseu6o5ina5vdw02un339779lz.png)
Now, calculate the inverse matrix components:
![\[ A^(-1) = \frac{1}{\text{Determinant}} \begin{bmatrix} √(3) & -0.8 \\ -26 & (4)/(3) \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/xm88pbi7z0x08n08p5xoahv9nmz68qipbz.png)
![\[ A^(-1) = (1)/((4√(3))/(3) - 20.8) \begin{bmatrix} √(3) & -0.8 \\ -26 & (4)/(3) \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/qypfs32sbsj7rd345if5eokkfvt5kbp9eq.png)
Substitute the calculated determinant value and perform the arithmetic:
![\[ A^(-1) = (1)/(\left((4√(3))/(3) - 20.8\right)) \begin{bmatrix} √(3) & -0.8 \\ -26 & (4)/(3) \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/qaovzgsavrv5ax45j1rlcjc1q5n34yfkdn.png)
Now, find the inverse matrix values and round each entry to six decimal places.
![\[ A^(-1) \approx \begin{bmatrix} 0.139051 & -0.037482 \\ -2.086455 & 0.093153 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ujy0j1l7fx045lsl7cstmm2uo7ujjxcl47.png)
Therefore, the rounded inverse matrix \(A^{-1}\) is:
![\[ A^(-1) \approx \begin{bmatrix} 0.139051 & -0.037482 \\ -2.086455 & 0.093153 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ujy0j1l7fx045lsl7cstmm2uo7ujjxcl47.png)