Final answer:
The standard deviation of Y is 1.2278.
Step-by-step explanation:
To calculate the standard deviation of Y, we need to calculate the mean of Y first.
The formula for the mean is:
Mean = (y1 * P(y1)) + (y2 * P(y2)) + (y3 * P(y3)) + (y4 * P(y4)) + (y5 * P(y5)) + (y6 * P(y6))
Mean = (0 * 0.02) + (1 * 0.25) + (2 * 0.35) + (3 * 0.20) + (4 * 0.10) + (5 * 0.08)
Mean = 2.31
Next, we calculate the variance using the formula:
Variance = [(y1 - Mean)^2 * P(y1)] + [(y2 - Mean)^2 * P(y2)] + [(y3 - Mean)^2 * P(y3)] + [(y4 - Mean)^2 * P(y4)] + [(y5 - Mean)^2 * P(y5)] + [(y6 - Mean)^2 * P(y6)]
Variance = [(0 - 2.31)^2 * 0.02] + [(1 - 2.31)^2 * 0.25] + [(2 - 2.31)^2 * 0.35] + [(3 - 2.31)^2 * 0.20] + [(4 - 2.31)^2 * 0.10] + [(5 - 2.31)^2 * 0.08]
Variance = 1.5087
Finally, we calculate the standard deviation using the formula:
Standard Deviation = √Variance
Standard Deviation = √1.5087
Standard Deviation ≈ 1.2278