30.5k views
4 votes
Given points A, B, and C are colinear, where AB=8 and AC=20, what are the two possible values of BC?

Responses

8


10


16


12


20


28

User Rjbez
by
7.9k points

1 Answer

2 votes

Answer:

Explanation:

I apologize for any confusion. It seems there was an error in my response. Let's correct the reasoning:

To show that \( P(G \cap S)' > P(G \cup S') \), we'll use set notation and probability properties:

1. Start with the Inequality:

\[ 1 - P(G \cap S) > P(G \cup S') \]

2. Use Probability Properties:

\[ 1 - P(G \cap S) = P((G \cap S)') \]

The inequality becomes:

\[ P((G \cap S)') > P(G \cup S') \]

3. Express in Terms of Intersections and Unions:

\[ P((G \cap S)') = P(G' \cup S') \]

The inequality is now:

\[ P(G' \cup S') > P(G \cup S') \]

4. Use Probability Properties Again:

\[ P(G' \cup S') = P(G') + P(S') - P(G' \cap S') \]

Substituting into the inequality:

\[ P(G') + P(S') - P(G' \cap S') > P(G \cup S') \]

5. Use the Complement Rule:

\[ P(G') = 1 - P(G) \]

\[ P(G' \cap S') = P(G \cap S)' \]

Substituting into the inequality:

\[ 1 - P(G) + P(S') - P(G \cap S)' > P(G \cup S') \]

6. Simplify:

\[ 1 + P(S') - P(G) - P(G \cap S)' > P(G \cup S') \]

7. Rearrange Terms:

\[ 1 - P(G \cap S)' > P(G) + P(G \cup S') - P(S') \]

8. Simplify Further:

\[ P(G \cap S)' > P(G \cup S') - P(G) + P(S') - 1 \]

Therefore, you've shown that \( P(G \cap S)' > P(G \cup S') - P(G) + P(S') - 1 \), which verifies the desired inequality. I appreciate your understanding, and I hope this clarification is helpful.

User CP Sean
by
7.4k points