To rotate the triangle XYZ counterclockwise 180 degrees, is X'(-4,-8), Y'(-8,-8), and Z'(1,1)
My apologies for the confusion in my previous response. There was an error in the calculations. Let's correct it:
To rotate a point counterclockwise 180 degrees using the rotation formula:
![\[ x' = x \cos(180^\circ) - y \sin(180^\circ) \]](https://img.qammunity.org/2024/formulas/mathematics/college/ll1k9dp9unv3egc5quca1nxf73i418e3am.png)
![\[ y' = x \sin(180^\circ) + y \cos(180^\circ) \]](https://img.qammunity.org/2024/formulas/mathematics/college/17aavjuurb5qv4fpfqdu1z55du6we8q6e9.png)
Applying the formula to the vertices X(4,-1), Y(8,-2), and Z(1,-8):
![\[ X' = 4 \cos(180^\circ) - (-1) \sin(180^\circ) = -4 + 0 = -4 \]](https://img.qammunity.org/2024/formulas/mathematics/college/5c0ckxl9e6mvqjccohws8g8fipwi854vmt.png)
![\[ Y' = 8 \cos(180^\circ) - (-2) \sin(180^\circ) = -8 + 0 = -8 \]](https://img.qammunity.org/2024/formulas/mathematics/college/f103ba1sees1temwmqcodajny80ezzrkci.png)
![\[ Z' = 1 \cos(180^\circ) - (-8) \sin(180^\circ) = 1 + 0 = 1 \]](https://img.qammunity.org/2024/formulas/mathematics/college/2s4ahx2p6q0x14obdsf60solxvlcpakc14.png)
Therefore, the corrected rotated triangle has vertices X'(-4,-8), Y'(-8,-8), and Z'(1,1).