Answer:
Explanation:
To find the confidence interval estimate for the mean, you can use the formula:
\[ \text{Confidence Interval} = \text{Mean} \pm \left( \text{Z-Score} \times \frac{\text{Standard Deviation}}{\sqrt{\text{Sample Size}}} \right) \]
For a 68% confidence interval, you typically use a Z-score of 1 (as 68% of the data falls within one standard deviation of the mean).
So, the formula becomes:
\[ \text{Confidence Interval} = \text{Mean} \pm \left( \frac{\text{Standard Deviation}}{\sqrt{\text{Sample Size}}} \right) \]
Using the provided data:
\[ \text{Confidence Interval} = 3324.3 \pm \left( \frac{2463.8}{\sqrt{1}} \right) \]
Now, calculate the margin of error:
\[ \text{Margin of Error} = \frac{2463.8}{\sqrt{1}} \]
\[ \text{Margin of Error} = 2463.8 \]
So, the 68% confidence interval estimate is:
\[ 3324.3 \pm 2463.8 \]
To find the lowest level of this confidence interval, subtract the margin of error from the mean:
\[ \text{Lowest Level} = 3324.3 - 2463.8 \]
\[ \text{Lowest Level} \approx 860.5 \]
Therefore, the lowest level of the 68% confidence interval estimate for the mean is approximately 860.5.