82.6k views
5 votes
The resulting function can be written as f^-1 (x) = ___ (x-___) ^3

User Oktopus
by
7.6k points

1 Answer

0 votes

The inverse function of f(x) will be f⁻¹(x) = 1/8(x - 4)³.

A statement, principle, or policy that creates the link between two variables is known as a function.

Functions are found all across mathematics and are required for the creation of complex relationships.

The function f(x) is given below.

f(x) = ∛(8x) + 4

Then the inverse function of f(x) will be

Put x = f⁻¹(x) and f(x) = x. Then we have

x = ∛{8f⁻¹(x)} + 4

∛{8f⁻¹(x)} = x - 4

Cube on both sides, then we have

8f⁻¹(x) = (x - 4)³

f⁻¹(x) = 1/8(x - 4)³

Question

f(x) = ∛(8x) + 4 To determine the inverse of function f, change f(x) to y, switch and solve for and y, The resulting function can be written as f^-1(x) = ___(x-___ )^3.

User Rfeak
by
7.2k points