Final answer:
An antiderivative calculator is used to find the antiderivative or integral of a function. There are two common solutions to calculate antiderivatives: a step-by-step method using integration techniques and a quicker method using a TI-83, 83+, or 84 calculator.
Step-by-step explanation:
An antiderivative calculator is used to find the antiderivative or integral of a function. There are different ways to calculate antiderivatives, and two common methods are through integration and using a calculator.
Solution A: To find the antiderivative step-by-step, you would use integration techniques such as power rule, substitution, or integration by parts. These techniques allow you to find the antiderivative of a given function by following a set of steps. This method is commonly used in calculus courses.
Solution B: If you have a TI-83, 83+, or 84 calculator, you can use the built-in functions to find the antiderivative. The calculator's integral function evaluates the integral of a function, providing you with the result. This method is quicker and more convenient when you need to find the antiderivative of a function without going through the step-by-step process.