231k views
3 votes
Explain how to simplify in one sentence

Explain how to simplify in one sentence-example-1
User Mazzaroth
by
8.1k points

2 Answers

4 votes

The simplified expression is
log_4((m^7)/(125-b^2) ).

let's simplify the expression step by step:


7log_4 m- 3log_4 5 - 2log_4b^2

Using logarithm properties:


log_4 m- log_4 5^3 - log_4b^2

Further simplification:


log_4 m^7- log_4 125 - log_4b^2

Combining logarithms:


log_4((m^7)/(125-b^2) ).

So, the simplified expression is
log_4((m^7)/(125-b^2) ).

User TheWildHealer
by
8.4k points
2 votes

Answer:


\sf \log_4 \left((m^7)/(125b^2)\right)

Explanation:

To simplify the expression
\sf 7\log_4 m - 3\log_4 5 - 2\log_4 b, we can use the properties of logarithms. Here are some logarithmic properties that will be helpful:


\boxed{\boxed{\begin{aligned} \log_b a + \log_b c & = \log_b (ac)\textsf{ (Product Rule)}\\\\ \log_b a - \log_b c & = \log_b \left((a)/(c)\right)\textsf{ (Quotient Rule)} \\\\ n \cdot \log_b a & = \log_b (a^n)\textsf{(Power Rule)}\end{aligned}}}

Applying these rules to the given expression:


\sf 7\log_4 m - 3\log_4 5 - 2\log_4 b

Using the Power Rule, we can bring the coefficients as exponents:


\sf \log_4 m^7 - \log_4 5^3 - \log_4 b^2

Now, apply the Product and Quotient Rules:


\sf \log_4 \left((m^7)/(5^3 \cdot b^2)\right)

So, the simplified form of
\sf 7\log_4 m - 3\log_4 5 - 2\log_4 b is:


\sf \log_4 \left((m^7)/(125b^2)\right)

User MikeJPR
by
8.0k points