Final answer:
To prove the given identity, we simplify the left-hand side and the right-hand side of the equation to show that they are equal.
Step-by-step explanation:
To prove the given identity:
(1 + 3cos(theta) - 4cos^3(theta))/(1 - cos(theta)) = (1 + 2cos(theta))^2
We can start by simplifying the left-hand side of the equation:
=(1 + 3cos(theta) - 4cos^3(theta))/(1 - cos(theta))
=(1 + cos(theta)(3 - 4cos^2(theta)))/(1 - cos(theta))
=(1 + cos(theta)(3 - 2cos^2(theta) - 2cos^2(theta)))/(1 - cos(theta))
=(1 + cos(theta)(3 - 2cos^2(theta) - sin^2(theta)))/(1 - cos(theta))
=(1 + cos(theta)(3 - sin^2(theta) - 2cos^2(theta)))/(1 - cos(theta))
=(1 + 3cos(theta) - cos^2(theta) - sin^2(theta))/(1 - cos(theta))
=(1 + 3cos(theta) - (cos^2(theta) + sin^2(theta)))/(1 - cos(theta))
=(1 + 3cos(theta) - 1)/(1 - cos(theta))
=3cos(theta)/(1 - cos(theta))
Now, we can simplify the right-hand side of the equation:
(1 + 2cos(theta))^2
= (1 + 2cos(theta))(1 + 2cos(theta))
= 1 + 2cos(theta) + 2cos(theta) + 4cos^2(theta)
= 1 + 4cos(theta) + 4cos^2(theta)
= 4cos^2(theta) + 4cos(theta) + 1
So, the right-hand side is equal to 3cos(theta)/(1 - cos(theta)) as well.
Therefore, the given identity is proven.