Answer:
B. v(t) = sin(t) + cos(t) + 2
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
Calculus
Antiderivatives - Integrals
Integration Constant C
Solving Integration Equations
Integration Property [Addition/Subtraction]:
![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/r5yh324r81plt97j3zrr5qi2xxczxlqi34.png)
Explanation:
*Note: Remember that the velocity function is the integral of the acceleration function/acceleration is the derivative of velocity.
![\displaystyle v'(t) = a(t)\\v(t) = \int {a(t)} \, dt](https://img.qammunity.org/2022/formulas/mathematics/high-school/sbxuwj48oqfjyfnw7p0whtmij0ptgzyr8q.png)
Step 1: Define
a(t) = cos(t) - sin(t)
v(0) = 3
Step 2: Integrate
- Set up integral:
![\displaystyle v(t) = \int {cos(t) - sin(t)} \, dt](https://img.qammunity.org/2022/formulas/mathematics/high-school/ubn30x67tk6vrv953lx1szlfqon95u3v2x.png)
- [integral] Rewrite [Integration Property - Subtraction]:
![\displaystyle v(t) = \int {cos(t)} \, dt - \int {sin(t)} \, dt](https://img.qammunity.org/2022/formulas/mathematics/high-school/c0fnvlt09trpy53fj10evmfwkxl0fl2bjp.png)
- [Integral] Trig integration:
![\displaystyle v(t) = sin(t) - [-cos(t)] + C](https://img.qammunity.org/2022/formulas/mathematics/high-school/tkdl6zsv24ckz3ssddrbgndtlvrbbl2be6.png)
- [Velocity Integration] Simplify:
![\displaystyle v(t) = sin(t) + cos(t) + C](https://img.qammunity.org/2022/formulas/mathematics/high-school/8zx65e5hwxgibp4mjzu12hg9416avbp12i.png)
Step 3: Find Function
We need to solve for the entire function, meaning we need to find constant C.
- Substitute in given point [Velocity Integration]:
![\displaystyle v(0) = sin(0) + cos(0) + C](https://img.qammunity.org/2022/formulas/mathematics/high-school/l5aqn1o01b4c29l0339dmjz0tdgaw2f547.png)
- [Velocity Integration] Substitute:
![\displaystyle 3 = sin(0) + cos(0) + C](https://img.qammunity.org/2022/formulas/mathematics/high-school/6weh954gdrhb9vxugqqqh7fab5v9ztnkcu.png)
- [Velocity Integration] Evaluate trig:
![\displaystyle 3 = 0 + 1 + C](https://img.qammunity.org/2022/formulas/mathematics/high-school/cglpzcl8ccwjnaymig6jyzd12vdmzh8bi7.png)
- [Velocity Integration] Add:
![\displaystyle 3 = 1 + C](https://img.qammunity.org/2022/formulas/mathematics/high-school/ctwtjb6wx6ucqxw23masqikf8n43ut5kmr.png)
- [Velocity Integration] Isolate C [Subtraction Property of Equality]:
![\displaystyle 2 = C](https://img.qammunity.org/2022/formulas/mathematics/high-school/w0845rsmiwjevkuc0gti7i77gg9tjbzh2f.png)
- [Velocity Integration] Rewrite:
![\displaystyle C = 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/ujvc8gdfyf53pwpvz6gjtij1vqr39ynauv.png)
- [Velocity Function] Substitute in C [Velocity Integration]:
![\displaystyle v(t) = sin(t) + cos(t) + 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/dpl79s8yi3yzm337x2bvnrkyxv2swcss0f.png)
Topic: Calculus
Unit: Basic Integration
Book: College Calculus 10e