188k views
23 votes
Which expression represents the distance between the points (11, 4) and (5,8)?

User Geovany
by
5.6k points

1 Answer

7 votes

Answer:


\displaystyle d = 2√(13)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)

Algebra II

  • Distance Formula:
    \displaystyle d = √((x_2-x_1)^2+(y_2-y_1)^2)

Explanation:

Step 1: Define

Point (11, 4) → x₁ = 11, y₁ = 4

Point (5, 8) → x₂ = 5, y₂ = 8

Step 2: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute in points [Distance Formula]:
    \displaystyle d = √((5-11)^2+(8-4)^2)
  2. [√Radical] (Parenthesis) Subtract:
    \displaystyle d = √((-6)^2+(4)^2)
  3. [√Radical] Evaluate exponents:
    \displaystyle d = √(36+16)
  4. [√Radical] Add:
    \displaystyle d = √(52)
  5. [√Radical] Simplify:
    \displaystyle d = 2√(13)
User Martin Cejp
by
5.2k points