Answer:
![\large\text{$64^{(4)/(3)}=\boxed{\left(\sqrt[3]{64}\right)^4}$}](https://img.qammunity.org/2024/formulas/mathematics/high-school/kgkjst97644aqllgn2jgyak921wx1wq4gj.png)


Explanation:
Given expression:

To rewrite the given expression as a radical raised to a power, we can apply the following radical rule:
![\boxed{\begin{array}{c}\underline{\sf Radical \;Rule}\\\\\large\text{$a^{(m)/(n)}=\left(\sqrt[n]{a}\right)^m$}\\\\\textsf{assuming} \;a\geq 0\end{array}}](https://img.qammunity.org/2024/formulas/mathematics/high-school/new9im1d9b8ei04ftjp768qk3w4d4525jo.png)
In this case:
Therefore:
![\large\text{$64^{(4)/(3)}=\left(\sqrt[3]{64}\right)^4$}](https://img.qammunity.org/2024/formulas/mathematics/high-school/a3x477m0vjrlgdd20omjgf13m8phsdd5k2.png)
To evaluate the radical, we can begin by rewriting 64 as 4³, then apply the radical rule:
![\boxed{\begin{array}{c}\underline{\sf Radical \;Rule}\\\\\large\text{$\sqrt[n]{a^m}=a^{(m)/(n)}$}\\\\\textsf{assuming} \;a\geq 0\end{array}}](https://img.qammunity.org/2024/formulas/mathematics/high-school/doyzzlzn2gl48l3stf3eywyn2x0od00vfg.png)
Therefore:
![\large\text{$\sqrt[3]{64}=\sqrt[3]{4^3}=4^{(3)/(3)}=4^1=4$}](https://img.qammunity.org/2024/formulas/mathematics/high-school/uqajfsb4pvezyni5qtgm3z1n2e1mxokc8o.png)
So:
![\large\text{$64^{(4)/(3)}=\left(\sqrt[3]{64}\right)^4=4^4$}](https://img.qammunity.org/2024/formulas/mathematics/high-school/7rru110j0zpveni5syj0321gvq62az924j.png)
In the expression 4⁴, the exponent indicates the number of times the base is multiplied by itself. So, 4⁴ is equivalent to the product of four instances of the number 4. Therefore:
![\large\text{$64^{(4)/(3)}=\left(\sqrt[3]{64}\right)^4=4^4=4 * 4 * 4 * 4=256$}](https://img.qammunity.org/2024/formulas/mathematics/high-school/2m135n0e0c7s8yx6gh1sfgt8osyuyb3myt.png)