when
and
is in Quadrant II.
In Quadrant II, the sine function is positive. You are given that
.
Using the Pythagorean identity for sine and cosine, which states that
, you can find
:
![\[\cos^2 \theta = 1 - \sin^2 \theta\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/5kmluze9s29pagi3cj7fyyyocssbyeqs7y.png)
Plug in the given value of
:
![\[\cos^2 \theta = 1 - \left((5)/(13)\right)^2\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/pj7xf4oq8q3ezo21w6hfcbz76damom3uh2.png)
Now, solve for
:
![\[\cos \theta = \pm \sqrt{1 - \left((5)/(13)\right)^2}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/buaxecad139p9zr6q2pz6xlcc7tx2zbxx8.png)
![\[\cos \theta = \pm \sqrt{1 - (25)/(169)}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/h5uhenaf5ze38iggrx5q17a5w014x17sy2.png)
![\[\cos \theta = \pm \sqrt{(144)/(169)}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/jac4nw2olprubuh0mgfti9xwpxbtdewpqr.png)
![\[\cos \theta = \pm (12)/(13)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/tdp9znp2xf10k62uyhn03pt52yyux2fvqt.png)
Since
is in Quadrant II, where the cosine function is negative, choose the negative sign:
![\[\cos \theta = -(12)/(13)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/icii3cdue9wrbef21lrprkx3m68n6467i5.png)
So,
when
and
is in Quadrant II.
The probable question may be:
"In the second quadrant of the coordinate plane, the cosine function is negative. Therefore, if
, the cosine function is given by

Substitute the given value of
:
![\[\cos\theta = -\sqrt{1 - \left((5)/(13)\right)^2}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/4omjhyex8f8q18zpebk3530h8jyctd2ff4.png)
Calculate the expression inside the square root, and then take the negative square root of that result to find
."