Final answer:
To find P(E∩F), we can use the formula P(E∩F) = P(E) + P(F) - P(E^c∪F). Given the values of P(E), P(F), and P(E^c∪F), we can substitute these values into the formula to find P(E∩F). The result is 0.16.
Step-by-step explanation:
To find P(E∩F), we can use the formula:
P(E∩F) = P(E) + P(F) - P(E^c∪F)
Given that P(E) = 0.35, P(F) = 0.67, and P(E^c∪F) = 0.86, we can substitute these values into the formula:
P(E∩F) = 0.35 + 0.67 - 0.86
Calculating this expression, we get: P(E∩F) = 0.16