230k views
1 vote
Find the mass of the solid cylinder D{(r,θ,z):0≤r≤3, 0≤z≤8} with density p(r,θ,z)= 1 + z/2.

User Hortitude
by
7.6k points

1 Answer

7 votes

Final Answer:

The mass of the solid cylinder D with density p(r,θ,z) = 1 +
(z)/(2)\) where
\(0 ≤ r ≤ 3\) and
\(0 ≤ z ≤ 8\) is M = 132π.

Step-by-step explanation:

To find the mass of the solid cylinder, we'll integrate the density function p(r,θ,z) over the given region D. Using cylindrical coordinates, the volume element dV = r , dr , dθ , dz. The density function p(r,θ,z) = 1 +
(z)/(2)\). Integrating over D, the mass M is given by:

M =
\iiint_D p(r,θ,z) \, dV = \int_0^(2π) \int_0^3 \int_0^8 \left(1 + (z)/(2)\right) r \, dz \, dr \, dθ\]

First integrating with respect to z, we get:

M =
\int_0^(2π) \int_0^3 \left[(zr)/(2) + (z^2)/(4)\right]_0^8 \, dr \, dθ\]

M =
\int_0^(2π) \int_0^3 \left(4r + 16\right) \, dr \, dθ\]

M =
\int_0^(2π) \left[2r^2 + 16r\right]_0^3 \, dθ\]

M =
\int_0^(2π) \left(18 + 48\right) \, dθ\]

M =
\int_0^(2π) 66 \, dθ = 66 * 2π = 132π\]

Thus, the mass of the solid cylinder D with the given density function is M = 132π.

User Jeff Moden
by
8.1k points