Final Answer:
The mass of the solid cylinder D with density p(r,θ,z) = 1 +
where
and
is M = 132π.
Step-by-step explanation:
To find the mass of the solid cylinder, we'll integrate the density function p(r,θ,z) over the given region D. Using cylindrical coordinates, the volume element dV = r , dr , dθ , dz. The density function p(r,θ,z) = 1 +
. Integrating over D, the mass M is given by:
M =
![\iiint_D p(r,θ,z) \, dV = \int_0^(2π) \int_0^3 \int_0^8 \left(1 + (z)/(2)\right) r \, dz \, dr \, dθ\]](https://img.qammunity.org/2024/formulas/physics/high-school/qdbqvj970y9hsw0cj1z4ycp21j1qzjdwnb.png)
First integrating with respect to z, we get:
M =
![\int_0^(2π) \int_0^3 \left[(zr)/(2) + (z^2)/(4)\right]_0^8 \, dr \, dθ\]](https://img.qammunity.org/2024/formulas/physics/high-school/2mfvhs01n4ryfxkkq427w01ms0ijctkz2m.png)
M =
![\int_0^(2π) \int_0^3 \left(4r + 16\right) \, dr \, dθ\]](https://img.qammunity.org/2024/formulas/physics/high-school/ubo0529ufuc8wmiy9gn1ibqupbh9zhzz9l.png)
M =
![\int_0^(2π) \left[2r^2 + 16r\right]_0^3 \, dθ\]](https://img.qammunity.org/2024/formulas/physics/high-school/cjgsk4pdj9oa55lru0k40s69hz9j0t4pb9.png)
M =
![\int_0^(2π) \left(18 + 48\right) \, dθ\]](https://img.qammunity.org/2024/formulas/physics/high-school/52bpdzd9sbywm1sqciuufev40cs6fwrlbi.png)
M =
![\int_0^(2π) 66 \, dθ = 66 * 2π = 132π\]](https://img.qammunity.org/2024/formulas/physics/high-school/9s0y3iswzj0b2pc326zq2pqo4wmp8g820y.png)
Thus, the mass of the solid cylinder D with the given density function is M = 132π.