Final answer:
The expression sin(-θ)cosθcsc(-θ)sec(-θ) can be simplified to sinθ * cosθ * cscθ * secθ.
Step-by-step explanation:
The expression sin(-θ)cosθcsc(-θ)sec(-θ) can be simplified using trigonometric identities.
- The identity sin(-θ) = -sinθ, cos(-θ) = cosθ, csc(-θ) = -cscθ, and sec(-θ) = secθ can be used.
- By substituting these values, we get -sinθ * cosθ * (-cscθ) * secθ.
- By rearranging the terms, we can simplify the expression to sinθ * cosθ * cscθ * secθ.
Therefore, the expression sin(-θ)cosθcsc(-θ)sec(-θ) is equivalent to sinθ * cosθ * cscθ * secθ.