The daily wage for a day laborer is $144, and for a concrete finisher, it is $160. This is determined by solving a system of linear equations using matrix multiplication.
Let's denote the daily wage for a day laborer as x and for a concrete finisher as y. The information given can be expressed in a system of linear equations:
1. For the scenario with 7 day laborers and 2 concrete finishers: 7x + 2y = 1328
2. For the scenario with 1 day laborer and 4 concrete finishers: x + 4y = 784
We can represent this system of equations in matrix form Ax = B, where:
![\[ A = \begin{bmatrix} 7 & 2 \\ 1 & 4 \end{bmatrix} \]\[ x = \begin{bmatrix} x \\ y \end{bmatrix} \]\[ B = \begin{bmatrix} 1328 \\ 784 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/tkycoyzspblwwcmko9mrprs5zd93dkx1cm.png)
Now, to solve for x, multiply both sides by the inverse of A:
![\[ A^(-1)Ax = A^(-1)B \]\[ x = A^(-1)B \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/a6b1fgvnj0tu5dtt8j3w7whwbftfm15n88.png)
Let's calculate the inverse of matrix A and then find x.
The inverse of matrix A is given by:
![\[ A^(-1) = (1)/((7 * 4 - 1 * 2)) \begin{bmatrix} 4 & -2 \\ -1 & 7 \end{bmatrix} \]\[ A^(-1) = (1)/(26) \begin{bmatrix} 4 & -2 \\ -1 & 7 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/kbbq4y81j1tdo4c7s080lptpbu6pre38iu.png)
Now, multiply
by B to find x:
![\[ x = A^(-1)B \]\[ x = (1)/(26) \begin{bmatrix} 4 & -2 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} 1328 \\ 784 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/g0i3efwhwko7ikywrbzjhem07dahec42ey.png)
After performing the matrix multiplication, you'll get the values for x and y, representing the daily wage for a day laborer and a concrete finisher, respectively.
Let's continue with the calculations:
![\[ x = (1)/(26) \begin{bmatrix} 4 & -2 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} 1328 \\ 784 \end{bmatrix} \]\[ x = (1)/(26) \begin{bmatrix} (4 * 1328) + (-2 * 784) \\ (-1 * 1328) + (7 * 784) \end{bmatrix} \]\[ x = (1)/(26) \begin{bmatrix} 5312 - 1568 \\ -1328 + 5488 \end{bmatrix} \]\[ x = (1)/(26) \begin{bmatrix} 3744 \\ 4160 \end{bmatrix} \]\[ x = \begin{bmatrix} 144 \\ 160 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/bydekpgn8snsya02tsa8k4b7flc31oyz8h.png)
Therefore, the daily wage for a day laborer (x) is $144, and for a concrete finisher (y), it is $160.