140k views
0 votes
Find the slope intercept form of the equation of the line satisfying the given conditions. Do not use a calculator. Through (5,20) and (0,5)

User EvenLisle
by
8.1k points

1 Answer

1 vote


(\stackrel{x_1}{5}~,~\stackrel{y_1}{20})\qquad (\stackrel{x_2}{0}~,~\stackrel{y_2}{5}) ~\hfill~ \stackrel{slope}{m}\implies \cfrac{\stackrel{\textit{\large rise}} {\stackrel{y_2}{5}-\stackrel{y1}{20}}}{\underset{\textit{\large run}} {\underset{x_2}{0}-\underset{x_1}{5}}} \implies \cfrac{ -15 }{ -5 } \implies 3


\begin{array}ll \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{20}=\stackrel{m}{3}(x-\stackrel{x_1}{5}) \\\\\\ y -20 = 3 x -15 \implies {\Large \begin{array}{llll} y = 3 x +5 \end{array}}

User Rakeshbs
by
8.1k points