133k views
5 votes
Is the following true or false?¬(p ∧ q) ≡ ¬p ∧ ¬q

1 Answer

4 votes

Final answer:

The statement ¬(p ∧ q) ≡ ¬p ∧ ¬q is true.

Step-by-step explanation:

The statement ¬(p ∧ q) ≡ ¬p ∧ ¬q is true.

To prove this, we can use a truth table. First, we need to evaluate ¬(p ∧ q) and ¬p ∧ ¬q for all possible truth values of p and q.

Truth table for ¬(p ∧ q):

pq¬(p ∧ q)true true false true false true false true true false false true

Truth table for ¬p ∧ ¬q:

pq¬p¬q¬p ∧ ¬qtruetruefalsefalsefalsetruefalsefalsetruefalsefalsetruetruefalsefalsefalsefalsetruetruetrue

By comparing the truth tables, we can see that the two statements have the same truth values for all possible combinations of p and q. Therefore, the statement ¬(p ∧ q) ≡ ¬p ∧ ¬q is true.

User Zeesha
by
7.7k points