Final answer:
The statement ¬(p ∧ q) ≡ ¬p ∧ ¬q is true.
Step-by-step explanation:
The statement ¬(p ∧ q) ≡ ¬p ∧ ¬q is true.
To prove this, we can use a truth table. First, we need to evaluate ¬(p ∧ q) and ¬p ∧ ¬q for all possible truth values of p and q.
Truth table for ¬(p ∧ q):
pq¬(p ∧ q)true true false true false true false true true false false true
Truth table for ¬p ∧ ¬q:
pq¬p¬q¬p ∧ ¬qtruetruefalsefalsefalsetruefalsefalsetruefalsefalsetruetruefalsefalsefalsefalsetruetruetrue
By comparing the truth tables, we can see that the two statements have the same truth values for all possible combinations of p and q. Therefore, the statement ¬(p ∧ q) ≡ ¬p ∧ ¬q is true.