14.6k views
2 votes
Radical form of (x^2/3 • X ^5/3)^1/2

1 Answer

3 votes

The radical form of the expression
(\frac{x^{(2)/(3) }. x^{(5)/(3) }}{2} )^{(1)/(2) } is
\frac{x^{(7)/(6) }}{√(2) }.

To find the radical form of
(\frac{x^{(2)/(3) }. x^{(5)/(3) }}{2} )^{(1)/(2) } , let's simplify it step by step.

First, let's combine the exponents inside the parentheses:


x^{(2)/(3) }. x^{(5)/(3) }= x^{(2)/(3) +(5)/(3) }= x^{(7)/(3) }

So, the expression becomes:


(\frac{x^{(7)/(3) }}{2} )^{(1)/(2) }

To simplify further, recall that raising something to the power of 1/2 is the same as taking the square root:


\sqrt{\frac{x^{(7)/(3) }}{2}}

In radical form:


\sqrt{\frac{x^{(7)/(3) }}{2}}=\sqrt{\frac{x^{(7)/(3) }}{√(2) } } =\frac{x^{(7)/(3) }}{√(2) }

Therefore, the radical form of the expression
(\frac{x^{(2)/(3) }. x^{(5)/(3) }}{2} )^{(1)/(2) } is
\frac{x^{(7)/(6) }}{√(2) }

User Cbroughton
by
8.2k points