The reasoning developed for counting microstates applies to many other situations involving probability. For example, if you flip a coin 5 times, how many different sequences of 3 heads and 2 tails are possible? Answer: 10 different sequences, such as HTHHT or TTHHH. In contrast, how many different sequences of 5 heads and 0 tails are possible? Obviously only one, HHHHH, and our equation gives 5!/[5!0!]=1, using the standard definition that 0! is defined to equal 1 If the coin is equally likely on a single throw to come up heads or tails, any specific sequence like HTHHT or HHHHH is equally likely. However, there is only one way to get HHHHH, while there are 10 ways to get 3 heads and 2 tails, so this is 10 times more probable than getting all heads. Use the expression 5!|[N!(5−N)!] to calculate the number of ways to get 0 heads, 1 head, 2 heads, 3 heads, 4 heads, or 5 heads in a sequence of 5 coin tosses. Make a graph of the number of ways vs. the number of heads.