184k views
5 votes
Triangle ABC is similar to AXY by a ratio of 5:3 if BC=25, what is the length of XY?

Triangle ABC is similar to AXY by a ratio of 5:3 if BC=25, what is the length of XY-example-1

1 Answer

1 vote

Final answer:

To find the length of XY, set up a proportion using the given ratio and solve for XY. The length of XY is 15 units.

Step-by-step explanation:

To find the length of XY, we can set up a ratio using the given information. The ratio of the lengths of the sides of the two triangles is 5:3. This means that the ratio of the length of BC to the length of XY is also 5:3. We can set up the following proportion:

BC / XY = 5 / 3

Substituting BC = 25, we can solve for XY:

25 / XY = 5 / 3

Cross multiply and solve for XY:

3 * 25 = 5 * XY

75 = 5 * XY

XY = 15

Therefore, the length of XY is 15 units.

11

User Manas Sahu
by
8.9k points